The virtio vsock transport currently derives its TX credit directly from peer_buf_alloc, which is populated from the remote endpoint's SO_VM_SOCKETS_BUFFER_SIZE value. On the host side, this means the amount of data we are willing to queue for a given connection is scaled purely by a peer-chosen value, rather than by the host's own vsock buffer configuration. A guest that advertises a very large buffer and reads slowly can cause the host to allocate a correspondingly large amount of sk_buff memory for that connection. In practice, a malicious guest can: - set a large AF_VSOCK buffer size (e.g. 2 GiB) with SO_VM_SOCKETS_BUFFER_MAX_SIZE / SO_VM_SOCKETS_BUFFER_SIZE, and - open multiple connections to a host vsock service that sends data while the guest drains slowly. On an unconstrained host this can drive Slab/SUnreclaim into the tens of GiB range, causing allocation failures and OOM kills in unrelated host processes while the offending VM remains running. On non-virtio transports and compatibility: - VMCI uses the AF_VSOCK buffer knobs to size its queue pairs per socket based on the local vsk->buffer_* values; the remote side can’t enlarge those queues beyond what the local endpoint configured. - Hyper-V’s vsock transport uses fixed-size VMBus ring buffers and an MTU bound; there is no peer-controlled credit field comparable to peer_buf_alloc, and the remote endpoint can’t drive in-flight kernel memory above those ring sizes. - The loopback path reuses virtio_transport_common.c, so it naturally follows the same semantics as the virtio transport. Make virtio-vsock consistent with that model by intersecting the peer’s advertised receive window with the local vsock buffer size when computing TX credit. We introduce a small helper and use it in virtio_transport_get_credit(), virtio_transport_has_space() and virtio_transport_seqpacket_enqueue(), so that: effective_tx_window = min(peer_buf_alloc, buf_alloc) This prevents a remote endpoint from forcing us to queue more data than our own configuration allows, while preserving the existing credit semantics and keeping virtio-vsock compatible with the other transports. On an unpatched Ubuntu 22.04 host (~64 GiB RAM), running a PoC with 32 guest vsock connections advertising 2 GiB each and reading slowly drove Slab/SUnreclaim from ~0.5 GiB to ~57 GiB and the system only recovered after killing the QEMU process. With this patch applied, rerunning the same PoC yields: Before: MemFree: ~61.6 GiB MemAvailable: ~62.3 GiB Slab: ~142 MiB SUnreclaim: ~117 MiB After 32 high-credit connections: MemFree: ~61.5 GiB MemAvailable: ~62.3 GiB Slab: ~178 MiB SUnreclaim: ~152 MiB i.e. only ~35 MiB increase in Slab/SUnreclaim, no host OOM, and the guest remains responsive. Fixes: 06a8fc78367d ("VSOCK: Introduce virtio_vsock_common.ko") Suggested-by: Stefano Garzarella Signed-off-by: Melbin K Mathew --- net/vmw_vsock/virtio_transport_common.c | 27 ++++++++++++++++++++++--- 1 file changed, 24 insertions(+), 3 deletions(-) diff --git a/net/vmw_vsock/virtio_transport_common.c b/net/vmw_vsock/virtio_transport_common.c index dcc8a1d58..02eeb96dd 100644 --- a/net/vmw_vsock/virtio_transport_common.c +++ b/net/vmw_vsock/virtio_transport_common.c @@ -491,6 +491,25 @@ void virtio_transport_consume_skb_sent(struct sk_buff *skb, bool consume) } EXPORT_SYMBOL_GPL(virtio_transport_consume_skb_sent); +/* Return the effective peer buffer size for TX credit computation. + * + * The peer advertises its receive buffer via peer_buf_alloc, but we + * cap that to our local buf_alloc (derived from + * SO_VM_SOCKETS_BUFFER_SIZE and already clamped to buffer_max_size) + * so that a remote endpoint cannot force us to queue more data than + * our own configuration allows. + */ +static u32 virtio_transport_tx_buf_alloc(struct virtio_vsock_sock *vvs) +{ + return min(vvs->peer_buf_alloc, vvs->buf_alloc); +} + u32 virtio_transport_get_credit(struct virtio_vsock_sock *vvs, u32 credit) { u32 ret; @@ -499,7 +518,8 @@ u32 virtio_transport_get_credit(struct virtio_vsock_sock *vvs, u32 credit) return 0; spin_lock_bh(&vvs->tx_lock); - ret = vvs->peer_buf_alloc - (vvs->tx_cnt - vvs->peer_fwd_cnt); + ret = virtio_transport_tx_buf_alloc(vvs) - + (vvs->tx_cnt - vvs->peer_fwd_cnt); if (ret > credit) ret = credit; vvs->tx_cnt += ret; @@ -831,7 +851,7 @@ virtio_transport_seqpacket_enqueue(struct vsock_sock *vsk, spin_lock_bh(&vvs->tx_lock); - if (len > vvs->peer_buf_alloc) { + if (len > virtio_transport_tx_buf_alloc(vvs)) { spin_unlock_bh(&vvs->tx_lock); return -EMSGSIZE; } @@ -882,7 +902,8 @@ static s64 virtio_transport_has_space(struct vsock_sock *vsk) struct virtio_vsock_sock *vvs = vsk->trans; s64 bytes; - bytes = (s64)vvs->peer_buf_alloc - (vvs->tx_cnt - vvs->peer_fwd_cnt); + bytes = (s64)virtio_transport_tx_buf_alloc(vvs) - + (vvs->tx_cnt - vvs->peer_fwd_cnt); if (bytes < 0) bytes = 0; -- 2.34.1