The changes related to sheaves made the description of locking and other details outdated. Update it to reflect current state. Also add a new copyright line due to major changes. Signed-off-by: Vlastimil Babka --- mm/slub.c | 141 +++++++++++++++++++++++++++++--------------------------------- 1 file changed, 67 insertions(+), 74 deletions(-) diff --git a/mm/slub.c b/mm/slub.c index 602674d56ae6..7f675659d93b 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -1,13 +1,15 @@ // SPDX-License-Identifier: GPL-2.0 /* - * SLUB: A slab allocator that limits cache line use instead of queuing - * objects in per cpu and per node lists. + * SLUB: A slab allocator with low overhead percpu array caches and mostly + * lockless freeing of objects to slabs in the slowpath. * - * The allocator synchronizes using per slab locks or atomic operations - * and only uses a centralized lock to manage a pool of partial slabs. + * The allocator synchronizes using spin_trylock for percpu arrays in the + * fastpath, and cmpxchg_double (or bit spinlock) for slowpath freeing. + * Uses a centralized lock to manage a pool of partial slabs. * * (C) 2007 SGI, Christoph Lameter * (C) 2011 Linux Foundation, Christoph Lameter + * (C) 2025 SUSE, Vlastimil Babka */ #include @@ -53,11 +55,13 @@ /* * Lock order: - * 1. slab_mutex (Global Mutex) - * 2. node->list_lock (Spinlock) - * 3. kmem_cache->cpu_slab->lock (Local lock) - * 4. slab_lock(slab) (Only on some arches) - * 5. object_map_lock (Only for debugging) + * 0. cpu_hotplug_lock + * 1. slab_mutex (Global Mutex) + * 2a. kmem_cache->cpu_sheaves->lock (Local trylock) + * 2b. node->barn->lock (Spinlock) + * 2c. node->list_lock (Spinlock) + * 3. slab_lock(slab) (Only on some arches) + * 4. object_map_lock (Only for debugging) * * slab_mutex * @@ -78,31 +82,38 @@ * C. slab->objects -> Number of objects in slab * D. slab->frozen -> frozen state * - * Frozen slabs + * SL_partial slabs + * + * Slabs on node partial list have at least one free object. A limited number + * of slabs on the list can be fully free (slab->inuse == 0), until we start + * discarding them. These slabs are marked with SL_partial, and the flag is + * cleared while removing them, usually to grab their freelist afterwards. + * This clearing also exempts them from list management. Please see + * __slab_free() for more details. * - * If a slab is frozen then it is exempt from list management. It is - * the cpu slab which is actively allocated from by the processor that - * froze it and it is not on any list. The processor that froze the - * slab is the one who can perform list operations on the slab. Other - * processors may put objects onto the freelist but the processor that - * froze the slab is the only one that can retrieve the objects from the - * slab's freelist. + * Full slabs * - * CPU partial slabs + * For caches without debugging enabled, full slabs (slab->inuse == + * slab->objects and slab->freelist == NULL) are not placed on any list. + * The __slab_free() freeing the first object from such a slab will place + * it on the partial list. Caches with debugging enabled place such slab + * on the full list and use different allocation and freeing paths. + * + * Frozen slabs * - * The partially empty slabs cached on the CPU partial list are used - * for performance reasons, which speeds up the allocation process. - * These slabs are not frozen, but are also exempt from list management, - * by clearing the SL_partial flag when moving out of the node - * partial list. Please see __slab_free() for more details. + * If a slab is frozen then it is exempt from list management. It is used to + * indicate a slab that has failed consistency checks and thus cannot be + * allocated from anymore - it is also marked as full. Any previously + * allocated objects will be simply leaked upon freeing instead of attempting + * to modify the potentially corrupted freelist and metadata. * * To sum up, the current scheme is: - * - node partial slab: SL_partial && !frozen - * - cpu partial slab: !SL_partial && !frozen - * - cpu slab: !SL_partial && frozen - * - full slab: !SL_partial && !frozen + * - node partial slab: SL_partial && !full && !frozen + * - taken off partial list: !SL_partial && !full && !frozen + * - full slab, not on any list: !SL_partial && full && !frozen + * - frozen due to inconsistency: !SL_partial && full && frozen * - * list_lock + * node->list_lock (spinlock) * * The list_lock protects the partial and full list on each node and * the partial slab counter. If taken then no new slabs may be added or @@ -112,47 +123,46 @@ * * The list_lock is a centralized lock and thus we avoid taking it as * much as possible. As long as SLUB does not have to handle partial - * slabs, operations can continue without any centralized lock. F.e. - * allocating a long series of objects that fill up slabs does not require - * the list lock. + * slabs, operations can continue without any centralized lock. * * For debug caches, all allocations are forced to go through a list_lock * protected region to serialize against concurrent validation. * - * cpu_slab->lock local lock + * cpu_sheaves->lock (local_trylock) * - * This locks protect slowpath manipulation of all kmem_cache_cpu fields - * except the stat counters. This is a percpu structure manipulated only by - * the local cpu, so the lock protects against being preempted or interrupted - * by an irq. Fast path operations rely on lockless operations instead. + * This lock protects fastpath operations on the percpu sheaves. On !RT it + * only disables preemption and does no atomic operations. As long as the main + * or spare sheaf can handle the allocation or free, there is no other + * overhead. * - * On PREEMPT_RT, the local lock neither disables interrupts nor preemption - * which means the lockless fastpath cannot be used as it might interfere with - * an in-progress slow path operations. In this case the local lock is always - * taken but it still utilizes the freelist for the common operations. + * node->barn->lock (spinlock) * - * lockless fastpaths + * This lock protects the operations on per-NUMA-node barn. It can quickly + * serve an empty or full sheaf if available, and avoid more expensive refill + * or flush operation. * - * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) - * are fully lockless when satisfied from the percpu slab (and when - * cmpxchg_double is possible to use, otherwise slab_lock is taken). - * They also don't disable preemption or migration or irqs. They rely on - * the transaction id (tid) field to detect being preempted or moved to - * another cpu. + * Lockless freeing + * + * Objects may have to be freed to their slabs when they are from a remote + * node (where we want to avoid filling local sheaves with remote objects) + * or when there are too many full sheaves. On architectures supporting + * cmpxchg_double this is done by a lockless update of slab's freelist and + * counters, otherwise slab_lock is taken. This only needs to take the + * list_lock if it's a first free to a full slab, or when there are too many + * fully free slabs and some need to be discarded. * * irq, preemption, migration considerations * - * Interrupts are disabled as part of list_lock or local_lock operations, or + * Interrupts are disabled as part of list_lock or barn lock operations, or * around the slab_lock operation, in order to make the slab allocator safe * to use in the context of an irq. + * Preemption is disabled as part of local_trylock operations. + * kmalloc_nolock() and kfree_nolock() are safe in NMI context but see + * their limitations. * - * In addition, preemption (or migration on PREEMPT_RT) is disabled in the - * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the - * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer - * doesn't have to be revalidated in each section protected by the local lock. - * - * SLUB assigns one slab for allocation to each processor. - * Allocations only occur from these slabs called cpu slabs. + * SLUB assigns two object arrays called sheaves for caching allocation and + * frees on each cpu, with a NUMA node shared barn for balancing between cpus. + * Allocations and frees are primarily served from these sheaves. * * Slabs with free elements are kept on a partial list and during regular * operations no list for full slabs is used. If an object in a full slab is @@ -160,25 +170,8 @@ * We track full slabs for debugging purposes though because otherwise we * cannot scan all objects. * - * Slabs are freed when they become empty. Teardown and setup is - * minimal so we rely on the page allocators per cpu caches for - * fast frees and allocs. - * - * slab->frozen The slab is frozen and exempt from list processing. - * This means that the slab is dedicated to a purpose - * such as satisfying allocations for a specific - * processor. Objects may be freed in the slab while - * it is frozen but slab_free will then skip the usual - * list operations. It is up to the processor holding - * the slab to integrate the slab into the slab lists - * when the slab is no longer needed. - * - * One use of this flag is to mark slabs that are - * used for allocations. Then such a slab becomes a cpu - * slab. The cpu slab may be equipped with an additional - * freelist that allows lockless access to - * free objects in addition to the regular freelist - * that requires the slab lock. + * Slabs are freed when they become empty. Teardown and setup is minimal so we + * rely on the page allocators per cpu caches for fast frees and allocs. * * SLAB_DEBUG_FLAGS Slab requires special handling due to debug * options set. This moves slab handling out of -- 2.52.0